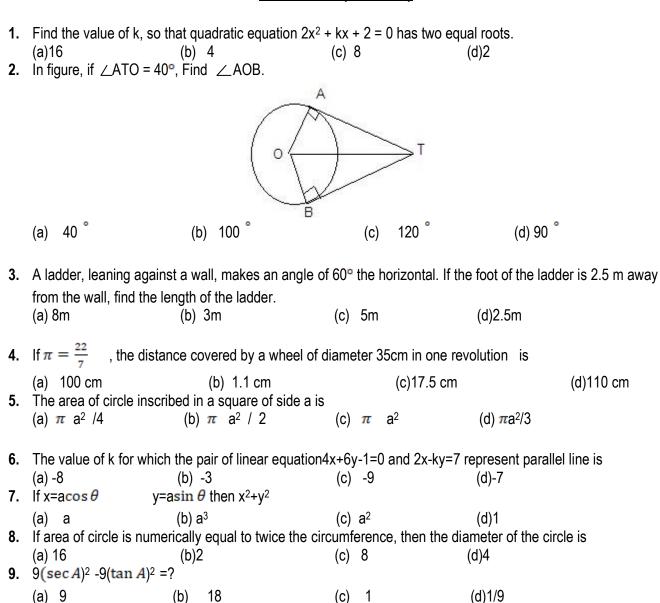
FIRST PRACTICE TEST – 2019-20

Class-X

Subject: Mathematics(STANDARD)


Time al	lowed:	3 hours
Genera	l Instru	ctions:

(a) (2,-1)

Maximum Marks: 80

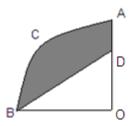
- (i) All questions are compulsory.
- (ii) The question paper consists of 40 questions divided into four sections A, B, C and D.
- (iii) Section A contains 20 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 8 questions of 3 marks each and Section D contains 6 questions of 4 marks each.
- (iv) Use of calculators is not permitted.

Section -A (1x20=20)

10. Find the coordinate of the midpoint of the line segment joining the points A (-5,4) and B (7,-8)

(b) (1,-2)

(c) (-1,-2)


(d)(3,-1)

11.	The HCF and LCM of t (a) 9	he two numbers are 9 and (b) 18	360 respectively. If one (c) 72	number is 45 then other number is (d)36
12.	What is the LCM of sm	allest prime no. and small	est composite no,	
	(a) 1	(b) 2	(c) 3	(d)4
13.	•	es of the polynomial P(x)=		
	(a)5	\ /	(c) 15	(d)-5
14.	In an AP if the commor	n difference is-4 and sever	nth term is 4 then first te	rm is
	(a)2	(b) 28	(c) 5	(d)7
15.	What is the value of co	$s^{2}67 - sin^{2}23$. ,	. ,
	(a) 67	(b) 25	(c) 0	(d)1
16.	Given ∆ABC is similar	AB 1	n find $\frac{ar(\Delta ABC)}{ar(\Delta pqr)}$	` '
	(a)1/16	(b) 1/10	(c) - 1/9	(d)1/9
47	2 tan 30°	_		
17.	1+tan30°Xtan3			

- (b) tan 30 (c) tan 45 (d) sin 30 (a) sin 60
- **18.** If 197a+173b=221 and 173a+197b=149 then (a,b) is (a) (3,-2) (b) (2,-1)(c) (1.-2) (d)(2,1)
- 19. Area of sector of angle p (in degrees) of a circle with radius R is (a) $\frac{p}{180}$ X2 π R (b) $\frac{p}{180}$ X π R² (c) $\frac{p}{720}$ dius R is (c) $\frac{p}{720}$ X2 π R² (d) $\frac{p}{360}$ X2 Π R²
- **20.** The common point of a tangent to a circle and the circle is called

Section -B (6x2=12)

- 21.∆ ABC is an isosceles triangle, right angled at C prove that AB2=2AC2
- **22**. Find two numbers whose sum is 27 and product is 182.
- 23. OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the (i) quadrant OACB
 - (ii) shaded region

- **24**. Find the 20th term from the last term of the AP: 3, 8, 13,,......253.
- Find the values of y for which the distance between them the points P (2, -3) and Q (10, y) is 10 units.
- If the points (1, 2), (4, y), (x, 6) and (3, 5) are the vertices of a parallelogram taken in order, find x and y.

Section -C(3x8=24)

- 27 Determine the AP whose 5th term is 15 and sum of 3rd and 8th term is 34.
- **28**. Prove that $3+2\sqrt{7}$ is irrational number
- 29 Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
- 30. In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find :
 - (i) the length of the arc
 - (ii) area of sector formed by the arc
 - (iii) area of the segment formed by the corresponding chord
- **31.** From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.
- **32.** Solve for x: $\frac{x+2}{x-2} + \frac{x-4}{x+4} = 6$ $(x \neq 2, -4)$
- **33**. Prove that.

$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$$

34. Find the ratio in which the line segment joining A (1, -5) and B (-4, 5) is divided by the x-axis. Also find the coordinates of the point of division.

Section -D(4x6=24)

- 35. Two water tapes together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
- **36**. The angle of elevation of an aeroplane from a point on the ground is 60° . After a flight of 30 second the angle of elevation becomes 30° . If the aeroplane is flying at a constant height of $3000\sqrt{3}$ m, find the speed of the aeroplane.
- **37.** In an equilateral triangle ABC, D is a point on side BC such that BD = $\frac{1}{3}$ BC. Prove that 9 AD² = 7 AB².

or

State and prove converse of Pythagoras theorem

38. Find the area of shaded region in figure, where a circular arc of radius 7 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm, as centre.

- 39. Draw a triangle ABC with side BC = 7 cm, \angle B =45° \angle A = 105°. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of \triangle ABC. (Also write steps of construction)
- **40.** Find all other zeros of $3x^4+6x^3-2x^2-10x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

QUESTION PAPER: MATHEMATICS CLASS - X MARKING SCHEME

Section-A

QUESTION NUMBER	ANSWERS	VALUE POINTS
1	а	1
2	b	1
3	С	1
4	d	1
5	a	1
6	b	1
7	С	1
8	d	1
9	a	1
10	b	1
11	С	1
12	d	1
13	a	1
14	b	1
15	С	1
16	d	1
17	a	1
18	b	1
19	С	1
20	point of	1
	contact	

Section-B

QUESTION NUMBER	EXPECTED ANSWERS	VALUE POINTS
21	GIVEN	1
	TO PROVE	_
	PROOF	1
22	Let the numbers are x and 27 – x.	(4)
	$X \cdot (27 - x) = 182$	(1)
	X = 13 , 14 Numbers are 13 & 14	(4)
	Numbers are 13 & 14	(1)
23	(i)Area of quadrant OACB = $\frac{1}{4}\pi r^2$	1/2
	$= \frac{1}{4} \times \frac{22}{7} \times (3.5)^2 = \frac{77}{8} = 9\frac{5}{8} \text{ cm}^2$	1/ ₂ 1/ ₂
	(ii) Area of $\triangle OBD = \frac{1}{2} \times 3.5 \times 2 = \frac{7}{2} \text{ cm}^2$	1/2
	Area of shaded region =area of quadrant OACB – Area of △OBD	
	$= \frac{77}{8} - \frac{7}{2} = 6\frac{1}{8} \text{ cm}^2$	
24	formula	1
	correct calculation	1
25	formula	1
	correct calculation	1
26	formula	1
	correct calculation	1

QUESTION NUMBER	EXPECTED ANSWERS SECTION C	VALUE POINTS
27	$T_5 = 15 \Rightarrow a + 4d = 15 \dots (1)$	(1)
	$T_3 + T_8 = 34 = (a + 2d) + (a + 7d) = 34$	
	2a +9d = 34(2)	(1)
	Solving eq. (1) and (2) we get a = -1 and d= 4	
	So -1, 3, 7,are in AP	(1)
28	given	
	to prove	1
	proof	
		2
29	For Given, To prove and figure	1½
	For correct proof	11/2
30	(i) Length of arc = $\frac{60^{\circ}}{360^{\circ}}$ x 2π x 21 = 22 cm	(1)
		(1)
	(ii) Area of sector = $\frac{60^{\circ}}{360^{\circ}} \times \pi \times (21)^2 = 231 \text{ cm}^2$	
		(1)

31	For figure	(1)
	In $\triangle APR$, we have $\tan 60^{\circ} = \frac{AR}{PR}$	
	$\sqrt{3} = \frac{h}{x} \implies h = \sqrt{3} \times \dots (l)$	(1)
	In $\triangle PBQ$, we have $\tan 45^{\circ} = \frac{PQ}{QB}$ 60° $h_{\perp}m$	
	$1 = \frac{7}{x} \implies x = 7(II)$	1/2
	By solving (I) and (II) we get h = $7\sqrt{3}$ i.e. AR = $7\sqrt{3}$ m	1/2
	Height of the tower AB = $7(\sqrt{3} + 1)$ m $\Rightarrow 45^{\circ}$	
	$Q \leftarrow X m \rightarrow B$	
32	$\frac{x+2}{x-2} + \frac{x-4}{x+4} = 6$	1/2
	(x + 2)(x + 4) + (x - 4)(x - 2) = 6(x - 2)(x + 4)	1
	After solving above eq. we get $x^2 + 3x - 16 = 0$	
	$X = \frac{-b \pm \sqrt{D}}{2a}$	1½
	$=\frac{-3\pm\sqrt{73}}{2}$.,2
33	Using identity	1/2
34	Correct Proof Let the required ratio be k : 1 .Then, the coordinate of the point of division	21/2
	is $P(\frac{-4k+1}{k+1}, \frac{5k-5}{k+1})$	(1)
	Since the point lies on x-axis. There its y-coordinate is zero.	
	$\frac{5k-5}{k+1} = 0 \implies k=1$	(1)
	So ratio = 1: 1	(1)
	Coordinate of point of division = $P(-\frac{3}{2}, 0)$	
QUESTION NUMBER	EXPECTED ANSWERS SECTION C	VALUE POINTS
35	Let the smaller tap fill the tank in x hours.	
	Then larger tap fills the tank in (x-10) hours	
	Part of tank filled by smaller tap in 1 hour = $\frac{1}{x}$	
	Part of the tank filled by the larger tap in 1 hour = $\frac{1}{x-10}$	(1)
	Part of the tank filled by both taps together in 1 hour = $\frac{8}{75}$	
	A/Q $\frac{1}{x} + \frac{1}{x-10} = \frac{8}{75}$ and after solving we get	(1)
	$4x^2 - 115x + 375 = 0$	(1)
	$(x-25)(4x-15) = 0 \Rightarrow x = 25 \text{ or } x = \frac{15}{4}$	
	Now $x = \frac{15}{4} = x - 10 < 0$ so $x = 25$	(1)
	Hence ,the time taken by smaller tap to fill the tank = 25 h	(')

36	For figure	(1)	
	In \triangle ABP, we have tan $60^{\circ} = \frac{BP}{AB}$		
	$\sqrt{3} = \frac{3000\sqrt{3}}{AB}$ => AB = 3000 m	(1)	
	In \triangle ACQ tan 30° = $\frac{cQ}{AC}$ 3000 $\sqrt{3}$ m		
	$\frac{1}{\sqrt{3}} = \frac{3000\sqrt{3}}{AC} \implies AC = 9000 \text{ m}$	(1)	
	So distance BC = AC − AB = 6000 m	(1)	
	Speed of plane = 720 km/h. A B C		
37	For Given, To prove figure	1 1 2	
	For correct proof		
38	Area of the shaded region = (area of circle – area of sector of central angle 60°) + area of		
	equilateral triangle OAB		
	$= \left[\left\{ \pi r^2 - \frac{\theta^{\circ}}{360^{\circ}} \pi r^2 \right\} + \frac{\sqrt{3}}{4} (side)^2 \right]$		
	$= \left[\left\{ \frac{22}{7} (7)^2 - \frac{60^\circ}{360^\circ} x \frac{22}{7} x (7)^2 \right\} + \frac{\sqrt{3}}{4} (12)^2 \right]$		
	= 190.68 cm ²		
39	For construction of △ABC	(1)	
	Construction of triangle whose sides are $\frac{4}{3}$ times the corresponding sides of \triangle ABC	(2) (1)	
	For steps of construction		
40	x ² +2x+1		
	zeroes x=-1	1	
	x=-1	2	