FIRST PRACTICE TEST - 2019-20
 Class-X
 Subject: Mathematics(STANDARD)

Time allowed: 3 hours
Maximum Marks :80

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 40 questions divided into four sections - A, B, C and D.
(iii) Section A contains 20 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 8 questions of 3 marks each and Section D contains 6 questions of 4 marks each.
(iv) Use of calculators is not permitted.

Section -A (1x20=20)

1. Find the value of k, so that quadratic equation $2 x^{2}+k x+2=0$ has two equal roots.
(a) 16
(b) 4
(c) 8
(d) 2
2. In figure, if $\angle A T O=40^{\circ}$, Find $\angle A O B$.

(a) 40°
(b) 100°
(c) 120°
(d) 90°
3. A ladder, leaning against a wall, makes an angle of 60° the horizontal. If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder.
(a) 8 m
(b) 3 m
(c) 5 m
(d) 2.5 m
4. If $\pi=\frac{22}{7}$, the distance covered by a wheel of diameter 35 cm in one revolution is
(a) 100 cm
(b) 1.1 cm
(c) 17.5 cm
(d) 110 cm
5. The area of circle inscribed in a square of side a is
(a) $\pi a^{2} / 4$
(b) $\pi \quad a^{2} / 2$
(c) $\pi \quad a^{2}$
(d) $\pi a^{2} / 3$
6. The value of k for which the pair of linear equation $4 x+6 y-1=0$ and $2 x-k y=7$ represent parallel line is
(a) -8
(b) -3
(c) -9
(d)-7
7. If $x=a \cos \theta \quad y=a \sin \theta$ then $x^{2}+y^{2}$
(a) a
(b) a^{3}
(c) a^{2}
(d) 1
8. If area of circle is numerically equal to twice the circumference, then the diameter of the circle is
(a) 16
(b)2
(c) 8
(d) 4
9. $9(\sec A)^{2}-9(\tan A)^{2}=$?
(a) 9
(b) 18
(c) 1
(d) $1 / 9$
10. Find the coordinate of the midpoint of the line segment joining the points $A(-5,4)$ and $B(7,-8)$
(a) $(2,-1)$
(b) $(1,-2)$
(c) $(-1,-2)$
(d) $(3,-1)$
11. The HCF and LCM of the two numbers are 9 and 360 respectively. If one number is 45 then other number is
(a) 9
(b) 18
(c) 72
(d) 36
12. What is the LCM of smallest prime no. and smallest composite no,
(a) 1
(b) 2
(c) 3
(d) 4
13. If α and β are the zeroes of the polynomial $P(x)=x^{2}-x-4$ then $\alpha+\beta-\alpha \beta=$
(a) 5
(b) 4
(c) 15
(d) -5
14. In an AP if the common difference is-4 and seventh term is 4 then first term is
(a) 2
(b) 28
(c) 5
(d) 7
15. What is the value of $\cos ^{2} 67-\sin ^{2} 23$
(a) 67
(b) 25
(c) 0
(d) 1
16. Given $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{PQR}$ if $\frac{A B}{P Q}=\frac{1}{3}$ then find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle p q r)}$
(a) $1 / 16$
(b) $1 / 10$
(c) $-1 / 9$
(d) $1 / 9$
$2 \tan 30^{\circ}$
17. $\frac{2 \tan 30^{\circ}}{1+\tan 30^{\circ} X \tan 30^{\circ}}=$
(a) $\sin 60$
(b) $\tan 30$
(c) $\tan 45$
(d) $\sin 30$
18. If $197 a+173 b=221$ and $173 a+197 b=149$ then (a, b) is
(a) $(3,-2)$
(b) $(2,-1)$
(c) (1.-2)
(d) $(2,1)$
19. Area of sector of angle p (in degrees) of a circle with radius R is
(a) $\frac{p}{180} \quad \mathrm{X} 2 \pi \mathrm{R}$
(b) $\frac{p}{180} \quad X \pi R^{2}$
(c) $\frac{p}{720} \quad \mathrm{X} 2 \pi \mathrm{R}^{2}$
(d) $\frac{p}{360} \times 2 \Pi \mathrm{R}^{2}$
20. The common point of a tangent to a circle and the circle is called

Section -B (6x2=12)

21. $\Delta A B C$ is an isosceles triangle, right angled at C prove that $A B^{2}=2 A C^{2}$
22. Find two numbers whose sum is 27 and product is 182.
23. $O A C B$ is a quadrant of a circle with centre O and radius 3.5 cm . If $O D=2 \mathrm{~cm}$, find the area of the (i) quadrant OACB
(ii) shaded region

24. Find the $20^{\text {th }}$ term from the last term of the $\mathrm{AP}: 3,8,13$, \qquad 253.
25. Find the values of y for which the distance between them the points $P(2,-3)$ and $Q(10, y)$ is 10 units.

26 If the points $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.

Section $-C(3 \times 8=24)$

27 Determine the AP whose $5^{\text {th }}$ term is 15 and sum of $3^{\text {rd }}$ and $8^{\text {th }}$ term is 34 .
28. Prove that $3+2 \sqrt{7 \text { is irrational number }}$

29 Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
30. In a circle of radius 21 cm , an arc subtends an angle of 60° at the centre. Find :
(i) the length of the arc
(ii) area of sector formed by the arc
(iii) area of the segment formed by the corresponding chord
31. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.
32. Solve for $\mathrm{x}: \frac{x+2}{x-2}+\frac{x-4}{x+4}=6 \quad(\mathrm{x} \neq 2,-4)$
33. Prove that.
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
34. Find the ratio in which the line segment joining $A(1,-5)$ and $B(-4,5)$ is divided by the x-axis. Also find the coordinates of the point of division.

Section $-D(4 \times 6=24)$

35. Two water tapes together can fill a tank in $9 \frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
36. The angle of elevation of an aeroplane from a point on the ground is 60°. After a flight of 30 second the angle of elevation becomes 30°. If the aeroplane is flying at a constant height of $3000 \sqrt{3} \mathrm{~m}$, find the speed of the aeroplane.
37. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
or
State and prove converse of Pythagoras theorem
38. Find the area of shaded region in figure, where a circular arc of radius 7 cm has been drawn with vertex 0 of an equilateral triangle $O A B$ of side 12 cm , as centre.

39. Draw a triangle $A B C$ with side $B C=7 \mathrm{~cm}, \quad \angle B=45^{\circ} \angle A=105^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$. (Also write steps of construction)
40. Find all other zeros of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes $\operatorname{are} \sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

QUESTION PAPER : MATHEMATICS CLASS - X
 MARKING SCHEME

Section-A

QUESTION NUMBER	ANSWERS	VALUE POINTS
1	a	1
2	b	1
3	c	1
4	d	1
5	a	1
6	b	1
7	c	1
8	d	1
9	a	1
10	b	1
11	c	1
12	d	1
13	a	1
14	b	1
15	c	1
16	d	1
17	a	1
18	b	1
19	c	1
20	point of	1
	contact	

Section-B

QUESTION NUMBER	EXPECTED ANSWERS	VALUE POINTS
21	$\begin{aligned} & \text { GIVEN } \\ & \text { TO PROVE } \\ & \text { PROOF } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
22	Let the numbers are x and $27-\mathrm{x}$. $\begin{gathered} X .(27-x)=182 \\ X=13,14 \end{gathered}$ Numbers are 13 \& 14	(1) (1)
23	(i)Area of quadrant $\begin{aligned} \text { OACB } & =\frac{1}{4} \pi r^{2} \\ & =\frac{1}{4} \times \frac{22}{7} \times(3.5)^{2}=\frac{77}{8}=9 \frac{5}{8} \mathrm{~cm}^{2} \end{aligned}$ (ii) Area of $\triangle \mathrm{OBD}=\frac{1}{2} \times 3.5 \times 2=\frac{7}{2} \mathrm{~cm}^{2}$ Area of shaded region =area of quadrant $O A C B-$ Area of $\triangle O B D$ $=\frac{77}{8}-\frac{7}{2}=6 \frac{1}{8} \mathrm{~cm}^{2}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
24	formula correct calculation	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
25	formula correct calculation	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
26	formula correct calculation	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

QUESTION NUMBER	EXPECTED ANSWERS SECTION C	VALUE POINTS
27	$\begin{align*} & T_{5}=15=>a+4 d=15 \ldots \ldots \ldots \ldots . .(1) \\ & T_{3}+T_{8}=34 \quad>(a+2 d)+(a+7 d)=34 \\ & 2 a+9 d=34 \ldots \ldots \ldots . . \tag{2} \end{align*}$ Solving eq. (1) and (2) we get $a=-1$ and $d=4$ So -1, 3, 7,are in AP	(1) (1) (1)
28	given to prove proof	$\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$
29	For Given, To prove and figure For correct proof	$\begin{aligned} & 11 / 2 \\ & 11 / 2 \end{aligned}$
30	(i) Length of arc $=\frac{60^{\circ}}{360^{\circ}} \times 2 \pi \times 21=22 \mathrm{~cm}$ (ii) Area of sector $=\frac{60^{\circ}}{360^{\circ}} \times \pi \times(21)^{2}=231 \mathrm{~cm}^{2}$	(1) (1) (1)

31	For figure In $\triangle A P R$, we have $\tan 60^{\circ}=\frac{A R}{P R}$ $\begin{equation*} \sqrt{3}=\frac{h}{x} \Rightarrow h=\sqrt{3} x \tag{I} \end{equation*}$ In $\triangle P B Q$, we have $\tan 45^{\circ}=\frac{P Q}{Q B}$ $1=\frac{7}{x} \Rightarrow x=7$ By solving (I) and (II) we get $\mathrm{h}=7 \sqrt{3}$ i.e. $\mathrm{AR}=7 \sqrt{3} \mathrm{~m}$ Height of the tower $A B=7(\sqrt{3}+1) \mathrm{m}$	(1) (1) $1 / 2$ $1 / 2$
32	$\begin{aligned} & \frac{x+2}{x-2}+\frac{x-4}{x+4}=6 \\ & (x+2)(x+4)+(x-4)(x-2)=6(x-2)(x+4) \end{aligned}$ After solving above eq. we get $x^{2}+3 x-16=0$ $\begin{aligned} & X=\frac{-b \pm \sqrt{D}}{2 a} \\ &=\frac{-3 \pm \sqrt{73}}{2} \end{aligned}$	$\begin{gathered} 1 / 2 \\ 1 \\ 11 / 2 \end{gathered}$
33	Using identity Correct Proof	$2^{1 / 2} 2^{1 / 2}$
34	Let the required ratio be $\mathrm{k}: 1$. Then, the coordinate of the point of division is $\mathrm{P}\left(\frac{-4 k+1}{k+1}, \frac{5 k-5}{k+1}\right)$ Since the point lies on x-axis. There its y-coordinate is zero. $\frac{5 k-5}{k+1}=0 \Rightarrow \mathrm{k}=1$ So ratio = 1: 1 $\text { Coordinate of point of division }=P\left(-\frac{3}{2}, 0\right)$	(1) (1) (1)
QUESTION NUMBER	EXPECTED ANSWERS SECTION C	VALUE POINTS
35	Let the smaller tap fill the tank in x hours. Then larger tap fills the tank in ($\mathrm{x}-10$) hours Part of tank filled by smaller tap in 1 hour $=\frac{1}{x}$ Part of the tank filled by the larger tap in 1 hour $=\frac{1}{x-10}$ Part of the tank filled by both taps together in 1 hour $=\frac{8}{75}$ A/Q $\frac{1}{x}+\frac{1}{x-10}=\frac{8}{75}$ and after solving we get $\begin{aligned} & 4 x^{2}-115 x+375=0 \\ & (x-25)(4 x-15)=0 \Rightarrow x=25 \text { or } x=\frac{15}{4} \end{aligned}$ Now $x=\frac{15}{4}=>x-10<0$ so $x=25$ Hence ,the time taken by smaller tap to fill the tank $=\mathbf{2 5} \mathrm{h}$	(1) (1) (1) (1)

36	For figure In $\triangle A B P$, we have $\tan 60^{\circ}=\frac{B P}{A B}$ $\sqrt{3}=\frac{3000 \sqrt{3}}{A B} \quad \Rightarrow \quad A B=3000 \mathrm{~m}$ In $\triangle A C Q \tan 30^{\circ}=\frac{C Q}{A C}$ $\frac{1}{\sqrt{3}}=\frac{3000 \sqrt{3}}{A C}=>A C=9000 \mathrm{~m}$ So distance $B C=A C-A B=6000 \mathrm{~m}$ Speed of plane $=720 \mathrm{~km} / \mathrm{h}$.	(1) (1) (1) (1)
37	For Given, To prove figure For correct proof	1 1 2
38	Area of the shaded region $=\left(\right.$ area of circle - area of sector of central angle $\left.60^{\circ}\right)+$ area of equilateral triangle $O A B$ $\begin{aligned} & =\left[\left\{\pi r^{2}-\frac{\theta^{2}}{360^{2}} \pi r^{2}\right\}+\frac{\sqrt{3}}{4}(\text { side })^{2}\right] \\ & =\left[\left\{\frac{22}{7}(7)^{2}-\frac{60^{2}}{360^{\circ}} \times \frac{22}{7} x(7)^{2}\right\}+\frac{\sqrt{3}}{4}(12)^{2}\right] \\ & =190.68 \mathrm{~cm}^{2} \end{aligned}$	(1) (1) (1) (1)
39	For construction of $\triangle \mathrm{ABC}$ Construction of triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$ For steps of construction	(1) (2) (1)
40	$\begin{gathered} x^{2}+2 x+1 \\ \text { zeroes } x=-1 \\ x=-1 \end{gathered}$	1 1 2

